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Abstract 

 

This paper presents a method for determining the statistical significance and goodness of 

fit of seriation solutions based on correspondence analysis. The basic assumption is that 

seriation solutions corresponding to relative chronological sequences should have 

unimodal distributions of types across assemblages in a sequence. In order to evaluate 

significance of chronological signal in data, the observed number of modes of a seriation 

solution based on correspondence analysis is compared to a distribution of number of 

modes generated by randomization of the original data table. A quantitative measure of 

the goodness of fit is presented. The method is tested on two data sets: 1) archaeological 

data with a known chronological ordering 2) non-archaeological data without a 

chronological patterning. The method successfully detected a significant chronological 

signal in the former, and failed to detect it in the latter.  

 

Keywords: seriation; relative chronology; correspondence analysis; archaeological 

dating. 
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1. Introduction 

 

1.1. Seriation in archaeology – theoretical background 

 

Seriation is a method of relative dating. Its main purpose is to establish the relative 

chronology of archaeological units such as artifacts or assemblages. O’Brien and Lyman 

(1999) recognize three kinds of seriation: 1) phyletic seriation 2) occurence seriation 3) 

frequency seriation. The most familiar kind of seriation is frequency seriation, invented 

by Alfred Kroeber (Kroeber, 1916a; 1916b;  see also Lyman, et al., 1997; O'Brien and 

Lyman, 1999), where the aim is to order the units in such fashion that the relative 

frequencies of artifact types within units follow a unimodal curve across units, so that 

each type monotonically increases and then decreases in frequency after reaching a peak 

of popularity.  (Dunnell, 1970). If this can be done, the resulting sequence is interpreted 

as a relative chronological sequence (Dunnell, 1970).  

 

Visually, a good seriation solution should results in the “battle-ship” pattern of 

attribute/type frequencies. The particular sequence of units that produces this kind of 

result is interpreted as a relative chronological sequence. The underlying logic of the 

method is the popularity principle – each attribute/artefact type of a certain class of 

material culture (e.g. bowl shape type) first appears in small quantities, then rises in 

popularity, reaches a peak, declines and disappears afterwards.  

 

On a more abstract level, seriation is a method based on similarities between 

archaeological units. Units can be artifacts or assemblages at any level. The aim of the 

procedure is to make such a sequence that the most similar units are adjacent to each 

other. The additional condition for a seriation solution to be considered successful is the 

condition of unimodality which states that the frequency of any attribute or type can have 

only one mode or local maximum (Dunnell, 1970).  

 

For many decades seriation was successfully used in archaeology without a theoretical 

explanation of why it worked so well. The popularity principle only restated the empirical 
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fact in different terms. Only recently, evolutionary archaeology provided the theoretical 

explanation of why seriation worked (Lipo, et al., 1997; Neiman, 1995; O'Brien and 

Lyman, 2000). It was shown that the familiar seriation “battle-ship” pattern is a 

predictable consequence of the random cultural transmission or neutral evolution (Lipo, 

et al., 1997; Neiman, 1995).  

 

1.2. Correspondence analysis and seriation 

 

Seriation is a general method, but there are many techniques that can be utilized to 

produce the seriation ordering (Dunnell, 1970; Marquardt, 1978). In the last two decades, 

correspondence analysis has become one of the most popular seriation techniques 

(Baxter, 1994; 2003; Shennan, 2004). The correspondence analysis (CA) is a multivariate 

statistical technique that reduces the dimensionality of contingency tables. It is analogous 

to Principal Component Analysis for data in the form of counts. This method allows the 

simultaneous representation of both cases (assemblages) and variables (types) in the two-

dimensional space. Usually the results of CA are presented graphically as a scatter-plot 

with x and y axes being the first two CA dimensions which capture most of the variability 

(inertia in CA terminology) in the original contingency table. An additional criterion for a 

chronological interpretation of CA results is the presence of an arch effect (also known as 

a horseshoe or Guttman effect) – the tendency of data points (both assemblages and 

types) to form an arch on a two dimensional CA plot. If data points in some concrete CA 

analysis form this shape, the order of assemblages on the first dimension is interpreted as 

a relative chronological sequence, because arch effect appears as a consequence of the 

unimodality of type frequencies (Baxter, 1994; 2003; Baxter and Cool, 2010). The 

mathematical reason for the arch effect is the quadratic relationship between the first two 

axes.  

 

CA is also used in ecology to identify gradients in the environment – e.g. spatial or 

environmental directions along which frequencies of individual species conform to 

unimodal curves (Ter Braak, 1985). The goodness of fit of the unimodal response model 

in ecology is then assessed by correlating the scores on the first CA axis with some 
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environmental variable (gradient).Ecologists are usually interested in removing the arch 

effect and expanding the distances between “compressed” data points located at the ends 

of the first CA axis, although these issues are widely debated (Hill and Gauch, 1980; 

Jackson and Somers, 1991; Peet, et al., 1988; Wartenberg, et al., 1987). The removal of 

the arch effect is called detrending (for applications of detrended CA in archaeology see 

Baxter and Cool, 2010; Lockyear, 2000). In general, the arch effect and the compression 

of points is not a problem if CA is used for relative dating, because archaeologist are 

usually interested only in the sequence of points (Baxter, 1994:120; Baxter and Cool, 

2010). 

 

1.3. Robustness and validity of seriation solutions 

 

The assessment of the fit of the data to the arch shape in archaeology is usually done 

visually without any formal criterion. In the CA literature a distinction is made between 

several aspects of CA solution properties (Greenacre, 2007:193): 1) stability of the 

solution 2) sampling variability 3) testing specific statistical hypotheses. In two recent 

studies the bootstrap method was used to assess the stability and sampling variability of 

the CA solution (Lockyear, in press; Peeples and Schachner, 2012; Ringrose, 1992), but 

this is not the same as the explicit test of significance of chronological signal. These 

studies were aimed primarily at evaluating the robustness of the resulting empirical 

solution in terms of the general structure of relationships between data points. They did 

not test for the stability and significance of any specific patterning such as arch effect or 

unimodality.  

 

How can we know that the ordering we got by applying a seriation method was actually a 

chronological ordering, and if it is, how good is it? This would correspond to Greenacre’s 

third aspect – testing of specific statistical hypotheses. Usually, hypotheses being tested 

in CA related research are the hypotheses about the independence/association of 

categorical variables making up the contingency table. Greenacre suggests that Monte 

Carlo and permutation test can be used as methods for testing specific hypotheses about 

the association of variables in CA (Greenacre, 2007:198-200). When CA is used as a 
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technique for seriation the specific hypothesis we wish to test is that the CA solution 

reflects relative chronology of seriated units. This may sound contradictory, because 

seriation should produce chronological patterning by definition. The contradiction is 

more apparent than real. Different seriation techniques will always produce output 

(seriation result) when applied to data. The key question is: is this output relevant as a 

chronological ordering? 

 

Lipo and colleagues demonstrated that only those assemblages that were produced by 

communities that participated in the same cultural transmission network can be 

successfully seriated and used this implication to reconstruct cultural interaction zones in 

the Mississippi region (Lipo, et al.,1997; Lipo, 2001). One of the methodological 

problems these authors faced was how to discriminate between good and poor seriation 

solutions. The theoretical premise of unimodality served as a criterion – only seriation 

solutions with assemblages that could be ordered in a fashion that would not violate the 

unimodality principle were considered as valid solutions. Lipo and colleagues had a very 

specific research problem, but the issue they tackled in their paper is an example of a 

more general problem that exists in the archaeology – the problem of how to evaluate the 

goodness of fit of seriation results. They invented a technique named the deterministic 

seriation (Lipo, et al., 1997) or the iterative seriation method (Lipo, 2001:43-46) to 

manually compare frequencies of types between successive assemblages using 

confidence intervals. This is the only method that I am aware of for evaluating whether a 

set of assemblages conforms to a seriation model. 

 

Given the theoretical and chronological significance of unimodality, it may be argued 

that only those CA seriation solutions that produce statistically robust unimodal patterns 

are good candidates for the construction of relative chronology (Dunnell, 1970). The 

method for evaluating statistical significance of unimodality in seriation solutions is 

presented in this paper. In archaeological practice, a unimodality of frequency 

distributions in seriation is taken as an indicator of chronological pattern. It should be 

emphasized that this is an inferential step that has to be justified independently. In 

general, unimodal distributions will arise whenever there is a gradient in data, 
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chronological or otherwise, so the equivalence of unimodality with chronological signal 

is inferential - it is justified only in cases when an analyst can be reasonably certain that 

other factors which may result in unimodal distribution of types within the assemblages 

can be excluded. This topic will be discussed in greater detail in Section 4.  

 

The method and the specific technique is presented and then illustrated by applying it to 

the assemblage with a known chronological order and to the assemblage without an 

underlying chronological pattern. In the appendix to the paper the code written in R is 

provided so that the method can be readily applied and modified by the interested reader.  

 

2. Method and data 

 

2.1. Evaluating statistical significance of seriation solutions 

 

In an ideal seriation model the total number of modes for an ordered data table should 

equal the total number of types. The existence of several modes per type and by 

implication the total number of modes that exceeds the number of types would violate the 

seriation assumption. Indeed, only three kinds of type frequency behavior are allowed in 

the ideal seriation model: 1) monotonic increase followed by monotonic decrease 2) 

monotonic increase 3) monotonic decrease. The departure from unimodality can be due 

to two reasons: 1) the effect of various biases that distort the underlying pattern 2) the 

true lack of unimodal behavior of frequencies. These two scenarios are what we wish to 

discriminate between. In reality we should expect to find departures from the ideal model 

due to sampling effects even if there is a real underlying chronological pattern in the data. 

Moreover, the number of possible modes increases as the number of assemblages (rows) 

increases (see 2.2.). The point is that it is very unlikely to find the perfect unimodality in 

real data – we can almost always expect to find more modes than types (or more than one 

mode per type to be precise). Therefore, the aim is to develop such method that would 

enable us to discriminate between the signal of unimodality (and by inference 

chronology) and random fluctuations. 
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The method developed in this paper presents one possible way of testing for the statistical 

significance of unimodal (chronological) signal in seriation solution. The procedure can 

be divided into 7 steps (Figure 1): 

 

Step 1. The first step is to perform a CA analysis on a contingency table with i rows and j 

columns where each cell in the table represents the count of jth type items within the ith 

assemblage.  

 

Step 2. The assemblages in the table should be reordered according to their order on the 

first CA axis.  

 

Step 3. The third step is to transform the absolute counts in the reordered table into 

relative frequencies of artifact types within assemblages. Technically, this is done by 

dividing each cell with the corresponding row sum of absolute frequencies. This step has 

to be performed because assemblages usually differ in sizes so we need to normalize the 

absolute counts to make them comparable along the seriation sequence. We are interested 

in changes in relative frequency of types between assemblages along the seriation 

sequence. 

 

Step 4. The next step is to count the number of modes within each type (column). It 

should be emphasized that the mode should not be understood in its strict sense (the most 

frequent value in a sample), but as a peak or local maximum. The local maximum for a 

given type is a relative frequency value that is greater than both the preceding and the 

following relative frequency. An illustration is shown in Figure 2. Horizontal axis 

presents the seriation sequence and the associated relative frequencies of Type 1 in 

assemblages from the Ezero data set (see Section 2.3.). In this example, there are 4 modes 

(marked by vertical bars in Figure 2). When the number of modes for each type is 

determined by counting the local maxima for that type, the total number of modes in 

ordered data is obtained by summing these counts. The observed total number of modes 

corresponds to the test statistic. This method of calculating the total number of modes is 

conservative in the sense that small deviations from unimodality are given the same 
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weight as great deviations. In the absence of theoretical criteria for weighting modes 

according to their prominence and intensity, it is safer to assume that all modes are of 

equal importance. 

 

Step 5. In this particular context we wish to determine whether the observed pattern is 

strong enough to be considered significant. In order to evaluate the significance of the 

unimodal signal we create a distribution of the total number of modes from randomized 

assemblages. Randomization of assemblages is performed by interchanging (permuting) 

the observed frequencies of individual types (within columns) between different 

assemblages (rows) in the original data table. In this way, we are deliberately destroying 

any real patterning in the data and creating something that is for all practical purposes a 

random combination of type frequencies across assemblages. A large number of 

randomized (permuted) data tables should be generated. In this paper, 1000 randomized 

data sets are produced for each analysis. 

 

Step 6. On each randomized data table, we perform CA, reorder the assemblages in the 

table in accord with the scores on the first CA axis, and then calculate the total number of 

modes using either the conservative or the weighted mode variant of Step 4. The total 

number of modes is recorded for each permutation of the original data. When this 

procedure is performed many times (1000 times in this case) the result is a distribution of 

1000 randomized total number of modes values. This randomized distribution can be 

regarded as a null distribution – it gives us the probability of observing different values of 

the total number of modes when the frequencies of types are randomly distributed across 

the assemblages, when there is no real structure, chronological or otherwise in the 

frequency variability. The logic of this analysis is taken from the methodology used to 

test the strength of the phylogenetic signal in cladistics (Kitching, et al., 1998:122-124). 

This is no coincidence because there are important similarities in the theory behind the 

seriation method and the cladistic reconstruction of phylogenetic trees (O'Brien, et al., 

2001; O'Brien and Lyman, 2003).  
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Step 7. The final step is to compare the test statistic (observed total number of modes) to 

this null distribution. If the observed value and some even more extreme value have a 

very low probability of occurring (e.g. below 0.05) in the distribution created by random 

data, then we have a relatively strong evidence against the null hypothesis of the non-

unimodal structure in the data. Given that the unimodal pattern is usually an indicator of 

chronological differences, we can then argue that the observed chronological pattern is 

statistically significant.  

 

2.2. Evaluating goodness of fit: the S coefficient 

 

In addition to statistical significance, it would be useful to have some measure of 

goodness of fit that would indicate how close a particular seriation solution corresponds 

to the ideal seriation model. Such measure, named the seriation coefficient (S), is 

calculated in the following manner: 

 

S = (Max – O) / (Max – E) 

 

where O is the observed total number of modes, E is the expected total number of modes 

if all types had unimodal distributions, and Max is the maximum total number of modes 

which depends on the number of assemblages (rows) in the data matrix. For an even 

number of assemblages, the maximum total number of modes is equal to the number of 

types multiplied by the number of assemblages divided by 2. For an odd number of 

assemblages, the maximum total number of modes is equal to the product of the number 

of types on one side, and the number of assemblages plus 1 divided by 2 on the other. 

The number of assemblages has to be taken into account because data matrices with a 

low number of rows can have fewer departures from unimodality than matrices with 

many rows. Seriation coefficient can take values between 0 and 1 – values close to 1 

indicate a strong fit to the seriation model, while values close to 0 indicate a poor fit. It 

should be noted that the formula for the seriation coefficient has some interesting 

structural similarities to the retention index formula from cladistics, which measures the 
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degree to which data fit the tree-like structure of the cladogram  (Kitching, et al., 

1998:97-99). 

 

2.3. Data 

 

In order to present and test this method in practice, it is applied first on an archaeological 

data set where the true chronological ordering of assemblages is known because 

assemblages come from stratified building horizons. This data set comes from the Early 

Bronze Age tell site of Ezero, Bulgaria (Георгиев, et al., 1979:Table 200). Table 1 shows 

the frequencies of relief decoration motifs within individual building horizons in Ezero. It 

was estimated that the duration of individual building horizons is roughly the same 

(Weninger, 1995). In this case the method is expected to detect a significant and strong 

chronological signal in the data. 

 

The method is also applied on a contingency table data set without chronological signal 

or any unimodal signal whatsoever. This data was randomly generated. Each cell value in 

the data table (Table 2) is a random number taken from a uniform distribution of integers 

ranging between 0 and 50. In this way we can be certain that these are completely 

random data where no gradient, chronological or otherwise, is present. Therefore, the 

method should fail to detect the significant unimodal (chronological) signal when applied 

to this data that will serve as control for the method. 

  

3. Results 

 

3.1. Ezero data results 

 

The results of CA analysis of the Ezero data are presented in Figure 4. CA summary 

information is given in Tables 3-4. Axis 1 and Axis 2 account for 47.07% and 13.97% of 

total inertia, respectively. The seriation diagram based on the sequence of assemblages 

along the first CA axis is presented in Figure 4. Apparently, there is a pronounced arch 

effect in the CA biplot and visual inspection of the seriation diagram shows that type 
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frequencies seem to follow a unimodal pattern in general. The seriation of assemblages 

by CA gives the correct chronological order for most of the assemblages. The positions 

of building horizons V and VIII are wrong, but the sequence in general is correct.  

 

The total observed number of modes based on the CA seriation is 63. The histogram of 

the distribution of total number of modes for the conservative approach from 1000 

permutations of the original data is shown in Figure 5. The observed value is smaller than 

the 5th percentile of the distribution of randomized samples which is 71. The value of the 

seriation coefficient is 0.63. Therefore, we can conclude that there is a relatively strong 

and significant signal of unimodality, and by inference chronological signal, in the data.  

 

3.2. Control (random) data results 

 

The results of the CA analysis of the atemporal data set with the corresponding seriation 

diagram are shown in Figures 6 and 7, respectively. Axis 1 and Axis 2 account for 

50.28% and 24.29% of total inertia, respectively. CA summary information is given in 

Tables 5-6. As expected, there is no arch effect, and the frequencies do not follow a 

unimodal pattern.  

 

The observed total number of modes for this data is 31. From the histogram of 

randomized values we can see that the probability of obtaining the total number of modes 

value equal or less of the empirically observed value is rather high (Figure 8). The 5th 

percentile of the distribution is equal to 26 modes. Therefore, we do not have enough 

evidence to reject the null hypothesis of non-unimodality. The value of the seriation 

coefficient is 0.31. Therefore, we can conclude on the basis of the results that there is no 

unimodal signal in this data. Again, this is the correct conclusion since we know that 

there cannot be any meaningful unimodal signal in this data set. 

 

4. Discussion 

 

4.1. Performance of the method 
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The results clearly show that the method presented in this paper successfully detects the 

chronological signal when present, and fails to detect it when absent. Additionally it 

provides the measure of goodness of fit in the form of the seriation coefficient. Therefore, 

it can be used as means of determining the strength and the significance of the 

chronological signal in seriation solutions.  

 

It is interesting to note that the value of the seriation coefficient in the case of the Ezero 

data set was over 0.5, but not so close to 1. This is good because it reflects the fact that 

the ordering recovered by the CA is not entirely correct. On the other hand, the fact that 

small deviations from unimodality are given the same weight as great deviations implies 

that S coefficient values are probably lower than they would be if we could a priori 

eliminate insignificant modes from the total number of observed modes. Therefore, even 

moderate values of S coefficient may reflect a significant unimodal pattern. It should also 

be noted that statistical properties of the S coefficient are unknown at the moment, so 

differences in S among seriations should be interpreted with caution. 

 

It should also be emphasized that if there is a chronological signal in data, but this signal 

is not dominant, meaning that the greater portion of variation is accounted for by some 

other non-temporal factor, it is likely that the first CA axis will not represent chronology 

but this other dominant factor. Temporal dimension may be recovered on the second or 

the third CA axis. In this case, the presented technique will fail to detect the 

chronological signal even if there is one. Therefore, visual inspection of the CA plot of 

original data should always precede the formal analysis, because if indication of 

chronological patterning can be observed on the second CA axis, then the second axis can 

be used for seriation. 

 

The reason why CA was used in this paper as a seriation technique for the initial 

ordination of assemblages is only due to its ubiquity in the literature. It is known that CA 

can often produce sequences that are correct in general, but not in details – it is not 

unusual to find some assemblages in the sequence with reversed position in relation to 
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their true seriation order (Baxter, 1994:121-123). This is what happened in the Ezero data 

set. Therefore, other seriation techniques can be used for the initial ordering of 

assemblages. For example, it is possible to construct a technique that would find the best 

seriation solution based solely on the criterion of unimodality. An algorithm can be 

devised that would try out all possible sequences of assemblages and keep only the 

sequence(s) where the departures from the unimodality criterion are the smallest. This 

would be a frequency seriation analogue for a technique that already exists for the 

occurrence seriation (O'Brien, et al., 2001). This best sequence can then be used to 

determine the observed total number of modes in the data. It should be noted that this 

would be very computationally intensive technique for larger datasets.  

 

4.2. Statistical considerations 

 

Returning again to parallels with cladistics, a significant question arises: can we interpret 

the tail probability of obtaining the observed or smaller number of modes in respect to the 

randomized distribution as a statistical significance? Authors from the field of cladistics 

consider that this kind of permutation test can only offer a relative measure of the 

phylogenetic signal strength in the data which is not the same as the statistical 

significance (Kitching, et al., 1998:125-126). It is argued that the reason for this is that 

the phylogenetic hierarchical structure must be imposed on the randomized data which by 

definition have no such structure, so the comparison of the test statistic derived from real 

data to the distribution generated by the randomized data with no intrinsic structure is not 

justified (Carpenter, 1992). 

 

While it may be argued that the traits of all biological species do have intrinsic 

phylogenetic hierarchy based on the theory of evolution (Carpenter, 1992), the same 

argument cannot be applied to archaeological assemblages a priori. There does not have 

to be an intrinsic chronological structure in all archaeological data set. For example, we 

could have several archaeological assemblages where differences in their content are 

caused by spatial or social factors rather than chronology. Additionally, we could have 

assemblages that do not belong to the same cultural tradition. By permuting the contents 
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of assemblages we are destroying a potential chronological signal in real data, if there is 

one, and we are simulating a range of unknown non-temporal processes that could have 

produced the data set with the same amount of variation. 

 

The argument that “tail probabilities” resulting from permutation tests are not Type I 

error probabilities is true (Carpenter, 1992), but this is a wrong argument to use in this 

context. Indeed, statistical significance based on permutation, as well as statistical 

significance (p) values derived by other means, are not the same thing as Type I errors 

developed in the Neiman-Pearson statistical testing framework (Hubbard and Lindsay, 

2008). Statistical significance is a concept developed by Sir Ronald Fisher to measure 

relative strength of evidence against some null hypothesis. Strictly speaking p values are 

not absolute long-term probabilities of error (Hubbard and Lindsay, 2008). Therefore, it 

makes sense to interpret tail probabilities from randomized distributions as statistical 

significance in Fisher’s sense. 

 

4.3. Chronological validity of seriation 

 

Finally, if the results of some concrete application of the test are statistically significant 

in the sense explained above, this does not have to mean that the detected signal of 

unimodality is necessarily chronological. It is only chronological by inference based on 

an a priori assumption that unimodal patterns in archaeology usually appear because of 

chronological differences.  

 

Seriation is usually performed on the stylistic classes or attributes of material culture, 

variants of which are transmitted in a neutral fashion (Cochrane, 2001; Dunnell, 1978; 

Lipo and Madsen, 2001). For these classes of artifacts the neutral model predicts the 

unimodal distribution of type frequencies through time (Neiman, 1995). Therefore, the 

temporal gradient will be dominant in such cases, as long as all directions in the physical 

space are more or less equally likely for the cultural transmission to occur. Variants can 

have unimodal frequencies even if they have different adaptive values (if they are 

culturally selected) in the so called Red Queen environments – if there is a constant 
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pressure to develop better (in respect to some arbitrary criterion) variants (Shennan and 

Wilkinson, 2001). On the other hand, if different variants of the studied class of material 

culture have different adaptive values which are correlated with positions in physical or 

social space (e.g. different variants are advantageous in different ecological settings), 

then a seriation of assemblages will also reflect a spatial or social dimension. The most 

pragmatic way to proceed is to interpret the unimodal pattern in chronological terms if 

other explanations can be excluded as less probable. This can be achieved in practice by 

testing whether scores on the first CA axis or the seriation sequence order of assemblages 

correlate with, for example, environmental or spatial gradients. If there is no correlation 

then these factors can be excluded as factors standing behind the unimodal response of 

type frequencies as reflected by the seriation sequence. 

 

5. Conclusion 

 

To summarize, the presented method should enable the researchers to formally evaluate 

the goodness of fit of their seriation solutions and to test for the significance of 

chronological signal in data. It is less sophisticated than the method developed by Lipo 

and colleagues (Lipo, et al., 1997; Lipo, 2001), because it does not include the manual 

fine tuning of the sequence by testing for significant differences between each pair of 

assemblages, but it is more practical given the fact that it can be done automatically and it 

provides a general goodness of fit indicator. 
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Figure captions: 
 
Figure 1: Flow-chart of the significance testing procedure. 
 
Figure 2: An illustration of the proportion of types and modes along the seriation 
sequence obtained by CA. 
 
Figure 3: Correspondence analysis biplot of the Ezero data; building horizons labeled 
with Roman numerals, vertical handle types with Arabic numerals. 
 
Figure 4: Seriation diagram of Ezero building horizons (in rows) ordered by the scores on 
the first CA axis. The seriation diagram was made using the Seriation Tool macro written 
by Tim Hunt and Carl Lipo (Lipo, et al., 1997) available on line at 
http://www.lipolab.org/seriation.html. 
  
Figure 5: Distribution of total number modes based on 1000 randomizations of the Ezero 
data. 
 
Figure 6: Correspondence analysis biplot of the control (random) data. 
 
Figure 7: Seriation diagram of hypothetical assemblages from the Table 2 ordered by the 
scores on the first CA axis. The seriation diagram was made using the Seriation Tool 
macro written by Tim Hunt and Carl Lipo (Lipo, et al., 1997) available on line at 
http://www.lipolab.org/seriation.html. 
 
Figure 8: Distribution of total number of modes based on 1000 randomizations of the 
control (random) data. 
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Table 1. Ezero vertical handle data set (data from Георгиев, et al. 1979:Table 200). Building 
horizons in rows, type codes in columns. 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
II 1 7 6 4 2 0 0 1 1 0 0 0 0 0 3 0 0 0 6 0 1 0 
III 2 4 7 4 2 1 0 7 0 4 2 0 3 0 3 0 0 0 18 0 4 2 
IV 5 10 3 8 4 3 0 5 1 5 4 0 3 1 5 0 0 0 14 0 5 3 
V 0 3 2 15 7 1 0 5 1 3 5 0 3 0 6 0 0 0 11 1 5 3 
VI 8 1 0 6 3 4 1 10 7 5 7 0 0 0 2 1 0 0 15 0 6 6 
VII 24 5 1 1 3 16 0 14 9 2 6 0 0 0 2 0 0 0 18 1 12 12 
VIII 11 0 0 0 0 6 0 7 4 0 2 0 0 0 6 0 0 0 8 1 0 3 
IX 7 3 0 0 0 7 1 4 4 1 2 1 0 0 5 0 0 0 2 2 4 1 
X 14 2 0 0 0 7 0 8 6 0 0 0 0 0 7 0 1 3 9 2 4 4 
XI 32 3 0 0 0 11 0 8 0 1 0 0 0 0 0 0 5 3 12 6 6 5 
XII 36 2 0 0 0 2 1 9 2 0 0 2 0 0 0 1 6 5 6 2 2 0 
XIII 20 0 0 0 0 5 0 0 15 0 0 0 0 0 0 0 2 9 5 0 2 3 

 
 
Table 2. Randomly generated data set – control data. 
 A B C D E F  G 
Assem1 44 50 6 13 24 6 28 
Assem2 1 6 37 45 39 42 10 
Assem3 17 25 14 37 35 22 41 
Assem4 30 13 30 7 22 22 12 
Assem5 26 37 25 23 30 23 20 
Assem6 1 21 34 5 43 42 1 
Assem7 44 16 25 7 32 5 47 
Assem8 4 18 27 19 30 8 5 
Assem9 36 38 42 3 37 37 26 
Assem10 36 34 38 43 43 0 49 
Assem11 37 12 43 48 47 43 6 
Assem12 2 13 15 29 7 18 24 

 
Table 3. CA summary for columns (types) of Ezero data table (for details about the descriptive 
measures presented in the table see Shennan, 2004:325-327). 

Type Mass Quality Inertia Axis 1 score Cor 1 Ctr 1 Axis 2 score Cor 2 Ctr  2 
1 0.19 0.956 0.123 0.695 0.885 0.232 0.197 0.071 0.063 
2 0.048 0.61 0.056 -0.619 0.383 0.046 0.477 0.227 0.092 
3 0.023 0.749 0.103 -1.313 0.448 0.098 1.077 0.301 0.223 
4 0.045 0.731 0.108 -1.205 0.72 0.165 0.152 0.011 0.009 
5 0.025 0.762 0.042 -1.035 0.761 0.067 0.021 0 0 
6 0.075 0.642 0.038 0.361 0.304 0.025 -0.381 0.338 0.092 
7 0.004 0.056 0.015 0.43 0.053 0.002 -0.108 0.003 0 
8 0.093 0.14 0.017 0.029 0.005 0 -0.145 0.135 0.016 
9 0.059 0.337 0.078 0.494 0.219 0.037 -0.361 0.117 0.066 
10 0.025 0.568 0.031 -0.746 0.537 0.035 -0.178 0.031 0.007 
11 0.033 0.764 0.032 -0.538 0.363 0.024 -0.566 0.401 0.091 
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12 0.004 0.289 0.026 1.008 0.168 0.009 0.855 0.121 0.022 
13 0.011 0.612 0.038 -1.308 0.574 0.046 0.337 0.038 0.01 
14 0.001 0.148 0.014 -1.15 0.137 0.004 0.323 0.011 0.001 
15 0.046 0.246 0.048 -0.423 0.207 0.021 -0.184 0.039 0.013 
16 0.002 0.072 0.012 0.492 0.056 0.001 0.261 0.016 0.001 
17 0.017 0.853 0.05 1.149 0.519 0.055 0.922 0.334 0.12 
18 0.024 0.586 0.084 1.204 0.488 0.087 0.542 0.099 0.059 
19 0.147 0.517 0.025 -0.269 0.516 0.027 0.006 0 0 
20 0.018 0.262 0.029 0.589 0.251 0.016 0.124 0.011 0.002 
21 0.061 0.308 0.013 -0.117 0.076 0.002 -0.204 0.232 0.021 
22 0.05 0.679 0.019 0.036 0.004 0 -0.46 0.674 0.09 

 
Table 4. CA summary for rows (building horizon assemblages) of Ezero data table (for details about 
the descriptive measures presented in the table see Shennan, 2004:325-327). 

Building horizon Mass Quality Inertia Axis 1 score Cor a 1 Ctr b 1 Axis 2 score Cor a 2 Ctr b 2 

II 0.038 0.712 0.115 -1.036 0.423 0.103 0.858 0.29 0.238 
III 0.075 0.697 0.089 -0.784 0.617 0.116 0.282 0.08 0.051 
IV 0.094 0.748 0.08 -0.724 0.731 0.124 0.111 0.017 0.01 
V 0.084 0.692 0.134 -0.963 0.691 0.197 -0.046 0.002 0.002 
VI 0.098 0.492 0.052 -0.235 0.124 0.014 -0.406 0.369 0.137 
VII 0.15 0.525 0.043 0.098 0.04 0.004 -0.342 0.485 0.149 
VIII 0.057 0.364 0.035 0.229 0.103 0.008 -0.365 0.261 0.065 
IX 0.052 0.167 0.045 0.193 0.051 0.005 -0.29 0.116 0.037 
X 0.08 0.436 0.03 0.342 0.368 0.024 -0.147 0.068 0.015 
XI 0.109 0.558 0.083 0.569 0.506 0.089 0.182 0.052 0.031 
XII 0.09 0.807 0.143 0.855 0.55 0.167 0.585 0.257 0.263 
XIII 0.073 0.468 0.152 0.905 0.465 0.15 0.076 0.003 0.004 

 
Table 5. CA summary for columns (types) of the random data table (for details about the descriptive 
measures presented in the table see Shennan, 2004:325-327). 
Type Mass Quality Inertia Axis 1 score Cor 1 Ctr 1 Axis 2 score Cor 2 Ctr 2 

A 0.132 0.772 0.189 -0.507 0.648 0.243 0.222 0.124 0.096 
B 0.135 0.425 0.122 -0.289 0.331 0.08 0.154 0.094 0.047 
C 0.16 0.581 0.075 0.251 0.48 0.072 0.115 0.101 0.031 
D 0.133 0.919 0.187 0.239 0.146 0.054 -0.55 0.773 0.595 
E 0.185 0.409 0.045 0.143 0.304 0.027 0.084 0.105 0.019 
F 0.127 0.832 0.196 0.565 0.747 0.291 0.19 0.085 0.068 
G 0.128 0.812 0.187 -0.504 0.626 0.232 -0.275 0.186 0.143 

 
Table 6. CA summary for rows (assemblages) of the random data table (for details about the 
descriptive measures presented in the table see Shennan, 2004:325-327). 
Assemblage Mass Quality Inertia Axis 1 score Cor 1 Ctr 1 Axis 2 score Cor 2 Ctr 2 

Ass1 0.081 0.782 0.15 -0.616 0.741 0.221 0.145 0.041 0.025 
Ass2 0.086 0.991 0.138 0.625 0.871 0.239 -0.232 0.119 0.068 
Ass3 0.091 0.694 0.049 -0.094 0.059 0.006 -0.308 0.635 0.127 
Ass4 0.065 0.576 0.039 -0.004 0 0 0.311 0.576 0.092 
Ass5 0.088 0.212 0.014 -0.071 0.116 0.003 0.064 0.096 0.005 
Ass6 0.07 0.877 0.15 0.592 0.586 0.175 0.417 0.291 0.18 
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Ass7 0.084 0.697 0.125 -0.536 0.693 0.172 0.043 0.004 0.002 
Ass8 0.053 0.259 0.047 0.25 0.254 0.024 -0.036 0.005 0.001 
Ass9 0.104 0.86 0.055 -0.059 0.024 0.003 0.351 0.836 0.19 
As10 0.116 0.804 0.078 -0.295 0.464 0.072 -0.252 0.34 0.109 
As11 0.112 0.496 0.082 0.318 0.495 0.081 -0.015 0.001 0 
As12 0.051 0.693 0.074 0.124 0.038 0.006 -0.512 0.655 0.199 
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Research highlights: 
 
-A method for testing the significance of seriation solutions is presented 
-Seriation coefficient is presented as a goodness of fit measure 
-The method successfully detects chronological signal when present 
-The method fails to detect chronological signal when absent 
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R CODE FOR PERFORMING THE PERMUTATION SIGNIFICANCE TEST 
 
 
library(ca)   #library ca has to be installed  
library(plyr) #library plyr has to be installed 
Perm <- 1000  # Perm sets the number of permutations for the 
randomization test. The default is 1000 but it can be changed by the 
user. 
PERM <- c(1:Perm)      
 
#Defining function for counting modes 
 
localMaxima <- function(x) { 
  # Use -Inf instead if x is numeric (non-integer) 
  y <- diff(c(-.Machine$integer.max, x)) > 0L 
  rle(y)$lengths 
  y <- cumsum(rle(y)$lengths) 
  y <- y[seq.int(1L, length(y), 2L)] 
  if (x[[1]] == x[[2]]) { 
    y <- y[-1] 
  } 
  y 
} 
 
 
 
#Reading data# 
 
# Select and Copy a complete data table (in the form of Tables 1-2 in 
the main text) from a spreadsheet 
 
data <- read.table("clipboard") #after copying the data from the 
spreadsheet, run this line  
 
#Performing correspondence analysis (CA) on the data and calculating 
the number of modes for the CA solution 
 
M <- length(data[1,]) 
a <- c(1:M) 
b <- c(1:M) 
data2 <- as.matrix(data) 
ord <- ca(data)$rowcoord[,1] 
data <- as.matrix(data) 
data1 <- cbind(ord, data) 
data1 <- as.data.frame(data1) 
G <- arrange(data1, desc(ord)) 
matr <- G[,2:(M+1)]/(apply(G[,2:(M+1)],1, sum)) 
 
 
for(j in 1:M) { 
 
a[j] <- length(localMaxima(matr[,j])) 
 
} 
 
sum(a) #gives the observed total of modes 
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# Generating the distribution of total number of modes with randomized 
data 
 
for(i in 1:Perm) { 
for(j in 1:M) { 
data2[,j] <- sample(data[,j], replace = FALSE)} 
ord <- ca(data2[which(rowSums(data2)>0),])$rowcoord[,1] 
data2 <- as.matrix(data2) 
data3 <- cbind(ord, data2[which(rowSums(data2)>0),]) 
data3 <- as.data.frame(data3) 
G <- arrange(data3, desc(ord)) 
 
matr <- G[,2:(M+1)]/(apply(G[,2:(M+1)],1, sum)) 
 
for(j in 1:M) { 
b[j] <- length(localMaxima(matr[,j]))} 
 
PERM[i] <- sum(b)} 
 
 
 
hist(PERM)         # Draws a histogram of randomized total number of 
modes        
 
quantile(PERM, 0.05) # Gives the value of the 5th percentile of the 
randomized distribution of total number of modes 
 
 
 


