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GÖDEL AND 
THE LANGUAGE OF MATHEMATICS1

Abstract: The aim of this paper is to challenge Hao Wang’s presentation of Gödel’s 
views on the language of mathematics. Hao Wang claimed that the language of 
mathematics is for Gödel nothing but a sensory tool that helps humans to focus 
their attention on some abstract objects. According to an alternative interpretation 
presented here, Gödel believed that the language of mathematics has an important 
role in acquiring knowledge of the abstract mathematical world. One possible 
explanation of that role is proposed.2
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1. Introduction

What is the importance of language in mathematics? Are mathematical 
truths independent of the language in which they are expressed? Can we acquire 
mathematical knowledge without using language? What is the function of 
language in acquiring mathematical knowledge?

Gödel has made only a few remarks about language, which makes it difficult 
to say with certainty how he would respond to these questions. However, Gödel’s 
well-known interpreter, Hao Wang, does ascribe to Gödel one particular view that 
would answer these questions. According to this view, the language of mathematics 
has a purely practical role to help us, finite sensible beings, to get in touch with the 
world of abstract objects, which is the subject matter of mathematics.

This view does not accord well with Gödel’s interest in language, which is 
particularly evident in his results concerning the relationship between the syntax 
of a formal language and its semantics, that is, concerning the completeness or 
incompleteness of some formal systems. This fact casts doubt on Hao Wang’s 
interpretation of Gödel. Hao Wang finds support for his interpretation in Gödel’s 
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platonism, the view that the world which mathematics attempts to describe 
exists independently of humans and their language. However, it seems that Hao 
Wang ignores the specificity of Gödel’s view, which consists of acknowledging 
the existence of concepts as well as of mathematical objects such as numbers 
and sets. Another specificity of Gödel’s view, which should be significant in 
matters concerning language, is the idea that knowledge of mathematical objects 
is attained through the understanding of concepts under which these objects fall. 
It seems to me that we should follow Gödel’s lead in attempting to find a possible 
role for the language of mathematics in its contribution to our understanding of 
mathematical concepts. As we will see, it is plausible that at least at some point 
in his philosophical development, Gödel thought that the role of language in our 
understanding of independently existing concepts is significant.

It is clear that the questions about mathematical language will depend, to a 
great extent, on Gödel’s view on the subject matter of mathematics – its nature 
and mode of existence. I will, thus, begin by outlining this view.

1.1. Gödel’s platonism
In sketching out Gödel’s view of mathematics and its subject matter, I will 

be using the picture proposed by Roger Penrose, in which the reality is divided 
into three spheres. One of these spheres represents the world of physical objects, 
another represents the mental world, and the third stands for the world of abstract 
entities. Many philosophers would deny the existence of some of these spheres, 
but Gödel would acknowledge the existence of all three. There is a certain type 
of connection between any two of the spheres. One part of the abstract world is 
mirrored in mathematical and logical laws, which hold in the world of physical 
beings. On the other hand, one small part of the physical world, when suitably 
organized, gives rise to consciousness. Finally, one small part of mental activities 
consists of those referring to the abstract world. These are the mental activities 
concerned with abstract entities and their relations (Penrose, 2011, pp. 339–343).

According to Gödel, some of these entities are the subject matter of 
mathematical inquiry. These are, first of all, sets and concepts. Gödel seemingly 
thought there is an important difference between these two types of abstract 
entities, since he claims that „sets are objects, but concepts are not objects“ (Hao 
Wang, 1996, p. 235, no. 7.3.12). Concepts would be „the properties and relations 
of things existing independently of our definitions and constructions“ (Gödel, 
1944, p. 128).

The central question of this paper will be the following: What is the function 
of language in acquiring knowledge about mathematical reality? Is language 
necessary, or just makes it easier for us to reach knowledge of the abstract world? 
Another related question concerns the nature of language. Which sphere of reality 
does language belong to? Does it fall completely within one of the spheres? A 
negative answer to this question could be a consequence of the fact that language 
has different aspects, which do not necessarily belong to the same sphere of 
reality. Language is built out of symbols that are combined according to some 
specified rules, but also contain meaning. Which sphere do symbols of language 
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belong to, and where do we place its syntax and its semantics (or the meaning 
of its symbols)? Which aspect of language has a role in acquiring knowledge in 
general, and which in acquiring particular knowledge of the abstract world?

Let us see what Gödel’s answers to these questions would be according to 
Hao Wang.

2. Hao Wang on Gödel’s view of language

The view of language that Hao Wang ascribes to Gödel can be summed up 
in the following sentence: “Language is nothing but a one-one correspondence 
between abstract objects and concrete objects (namely, the linguistic symbols)” 
(Hao Wang, 1996, p. 180, no. 5.5.7). The role of language in mathematics is 
purely practical according to this view. Everything we come to know using one 
particular language, we can learn using another language as well. A good choice 
of language can merely facilitate the acquisition of that knowledge. Namely, 
“symbols only help us to fix and remember abstract things” (Hao Wang, 1996, p. 
180, no. 5.5.9). This fixation or identification of some abstract thing should be 
accomplished by associating some linguistic symbol with it. According to Hao 
Wang, Gödel believed that relations between abstract objects could, in this way, 
be replaced by relations between linguistic symbols associated with these objects, 
so that, by studying relations between symbols, we should be able to learn about 
the abstract world with less effort. Language has such an important, although 
purely practical role, because it is made of sensory symbols. It is easier for 
humans to deal with sensory objects, and to study and remember their relations 
and associations. In this way, language forms a kind of link between the sensory 
and the abstract world.

What does this suggest about the nature of language? Possibly the most 
important feature of language according to this view is that it is made of 
sensory symbols. Hence, we can say that language at least partly belongs to the 
physical sphere. On the other hand, if language is to help us learn things about 
the abstract world, its symbols should be combined in a way that reflects the 
relations between abstract objects. This means that rules for combining symbols 
of the language of mathematics into formulas and rules that relate formulas to 
one another should somehow be intrinsic to the abstract world itself. These rules 
should shape language into a sensory picture of the abstract world. Hao Wang 
does not try to explain how this picturing of the abstract world is even possible 
or how we come to know whether our language is truly an accurate picture 
of the abstract world. The answer might be related to a theory of meaning of 
mathematical symbols, but such a theory cannot be found among Hao Wang’s 
remarks. This can make us wonder whether Hao Wang takes meaning to be 
one aspect of language at all or considers language to consist only of symbols 
and rules of syntax. In any case, he clearly does not try to explain what the 
meaning of the language of mathematics consists in. This could be one of the 
reasons why his view about the role of language in mathematics, grounded in a 
certain kind of connection between linguistic symbols and abstract objects, is 
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not particularly appealing or informative. More precisely, what makes this view 
unappealing is the fact that Hao Wang leaves the supposition of a connection 
between the abstract world and symbols completely unjustified. It is not at all 
clear how that connection or association should be understood. Where and 
how does it take place? It seems the only plausible answer is that it takes place 
in the mental sphere, when the subject decides to reserve a particular symbol 
for some abstract object and to represent relations between abstract objects by 
relations between their symbols. But then we have to suppose that the subject 
is able to get in touch with the abstract objects and acquire knowledge of their 
relations without the use of language. Language only comes later, in helping 
him to remember those relations. This kind of view presupposes the possibility 
of epistemic access to the world of abstract entities that is unmediated by 
language. Some of Hao Wang’s claims do point in that direction: “Since Gödel 
believes that we are capable of intuitions of conceptual relations, for him 
language plays only a minor role” (Hao Wang, 1996, p. 329). Gödel did write 
about mathematical intuition as the main source of mathematical knowledge, 
but it is questionable whether he thought that this knowledge is unmediated 
by language. One possible analysis of his views on the nature of mathematical 
intuition will be presented later in the paper.

The adequate view concerning a language should characterize its function 
in a correct way. According to Hao Wang’s view, the basic function of the 
language of mathematics would be the naming of abstract objects. This function 
should make some others possible, such as making assertions or deducing. 
It seems to me that this consequence of Hao Wang’s interpretation actually 
reveals its inadequacy. Namely, following the implications of Gödel’s theory 
of mathematical knowledge leads us to the conclusion that if the language of 
mathematics is to have a role in acquiring that knowledge at all, then its basic 
function should not be naming, but rather making assertions and deducing. This 
should follow from the nature of mathematical knowledge which, according to 
Gödel, is conceptual. The rest of the paper will try to justify this claim. To that 
end, some of Gödel’s results that had probably influenced him most in forming 
his views on the nature of mathematical knowledge and the function of language 
will be sketched first.

3. Gödel on ways in which 
mathematical knowledge is attained

3.1. The completeness and incompleteness theorems

Someone who considers the language of mathematics as merely a tool to 
help humans would not think that investigations of that language are important 
for logic or mathematics. It seems that Gödel was not of that opinion. Namely, 
his best-known and most appreciated results concern formal languages – 
more precisely, the relationship between the syntax of a formal language and 
its semantics. These results are his proof of completeness of the first-order 
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predicate calculus, and his proof of incompleteness of formal arithmetic and its 
extensions. The question to which these results provide an answer is whether 
all true propositions about some subject could be expressed in one formal 
language, and deduced as the theorems of one formal system. According 
to Gödel’s incompleteness theorems, when it comes to all mathematical (or 
even only arithmetical) truths, this cannot be done. His first incompleteness 
theorem states that for every consistent formal system that contains arithmetic, 
there will be some sentence of that formal system, which will be true, but 
unprovable in that system. According to Gödel’s second theorem, one sentence 
of this kind will be the sentence that claims the consistency of the given formal 
system. So, if we are to prove the consistency of some formal system, we will 
have to use some mathematical and logical knowledge which is not formalized 
within that system.

What Gödel’s incompleteness theorems show is that no formal system 
containing every true mathematical proposition can ever be made. Can we 
conclude anything from this about the role of language in mathematics? Gödel 
thought so. Due to these results, Gödel was able to give a very strong argument 
against the view that mathematics refers only to linguistic expressions, i.e. 
formulas, and is a kind of technique for their transformation. In other words, 
using his incompleteness theorems, Gödel has shown that mathematics cannot 
be reduced to syntax. In the following section, I will sketch Gödel’s argument, 
and try to determine what it contributes to our analysis of his views on language.

3.1.1. Mathematics is not syntax of language
The idea that mathematics can be interpreted as the syntax of mathematical 

language stems from logical positivism. Logical positivists have tried to show 
that mathematical propositions do not describe any independently existing facts. 
According to their view, the role of language in mathematics is not to describe 
anything, but to express conventional rules for the use of mathematical symbols 
such as numerals, connectives, symbols for functions, etc. Some sentences that 
contain these symbols are considered to be true owing only to syntactical rules, 
that is, independently of any fact or meaning of the symbols. For example, any 
sentence of the form A=A is true, independently of the meaning of an expression 
that can stand in the place of ‘A’. What should be proven by logical positivists is 
that mathematics can be reduced to sentences of this kind, i.e., to sentences that 
express syntactical rules, or to their logical consequences. According to Gödel, 
the formalist view concerning the foundations of mathematics can be taken as 
one possible elaboration of this idea. We can understand this view as claiming 
that axioms and rules of inference, to which mathematics should be reducible, 
are syntactical rules which stipulate that sentences of some form (represented by 
axioms) are true, and that any other sentence that can be derived from axioms 
by some rules of inference is also true (Gödel, 1951, p. 315, fn. 23).

Gödel presents many arguments against conventionalism (Gödel, 1951, 
pp. 315–323; 1953/9). His main argument is that in reducing mathematics to a 
set of conventions (no matter what form those conventions might have) some 
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mathematical and logical knowledge has to be used. Gödel’s justification of this 
claim is based on his second incompleteness theorem and has the following 
presuppositions: rules of syntax have to be finitary (i.e. they must refer to finite 
strings of symbols only), and if some rules are to be accepted as conventional, it 
has to be proven that they do not imply any factual proposition. But in order to 
prove that the rules of syntax do not imply any factual proposition, we will have 
to prove that they are consistent, since an inconsistent set of propositions implies 
every proposition, including factual ones. However, for proving the consistency 
of the rules of syntax, we will have to use mathematical and logical knowledge 
which is not reducible to those rules. I will briefly sketch the reasoning that may 
be leading Gödel to this conclusion. Every combinatorial, finitary reasoning 
based on some set of syntactical rules can be represented as an induction up 
to some ordinal (Gödel, 1953/9, p. 343, fn. 21). Gödel believed it had been 
proven that the limit of finitary reasoning is the induction up to ε0. Thanks to 
Gentzen’s consistency proof for arithmetic, which makes use of this induction, 
we know that it cannot be represented in formal arithmetic. But any induction 
up to some smaller ordinal, and, a fortiori, any finitary reasoning represented 
by that induction, can. The conclusion is that all finitary proofs based on 
some set of syntactical rules can be contained within one formal system. The 
consistency of that formal system, however, cannot be proven in it, according 
to Gödel’s second theorem. For its consistency proof, some mathematical and 
logical knowledge not contained within that system will have to be used. Since 
that formal system contains every proof based on finitary concepts, i.e. every 
proof that refers to some concrete objects (such as linguistic symbols), some 
transfinite, abstract concepts and axioms referring to them will be needed for the 
proof of its consistency. In Gödel’s words: “In order to prove the consistency of 
classical number theory (and a fortiori of all stronger systems) certain abstract 
concepts (and the directly evident axioms referring to them) must be used, 
where ‘abstract’ means concepts which do not refer to sense objects, of which 
symbols are a special kind” (Gödel, 1951, p. 318). In another place, Gödel also 
says that: “... since finitary mathematics is defined as the mathematics in which 
evidence rests on what is intuitive, certain abstract notions are required for the 
proof of the consistency of number theory” (Gödel, 1958, p. 241).

The use of abstract concepts in mathematics was supposed to be justified 
by the reduction of mathematics to syntax. As it has been shown, however, that 
reduction cannot be accomplished. What this tells us is that syntax cannot amount 
to all of mathematical knowledge. In the perspective of Gödel’s platonistic view, 
this result shows that not all properties and relations between abstract objects 
can be represented by linguistic symbols and their combinations. If the language 
of mathematics is, as Hao Wang thought, used for mirroring relations between 
abstract objects, then it cannot accomplish its task very well. Still, that does not 
mean that Gödel thought language and its syntax do not have an important role 
in mathematics. This should be evident from his insistence on the importance of 
formalization.
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3.1.2. Gödel on formalization
According to Gödel, formalization has an important role in clarifying 

the foundations of mathematics. In his Cambridge lecture (Cambridge, 
Massachusetts), Gödel takes the problem of giving the foundations for 
mathematics to be falling into two different parts (Gödel, 1933, p. 45). The first is 
the reduction of all methods of proof to a minimum number of axioms and rules 
of inference, while the second is the justification of these axioms. According to 
Gödel, the first task has been “solved in a perfectly satisfactory way, the solution 
consisting in the so-called ‘formalization’ of mathematics, which means that a 
perfectly precise language has been invented, by which it is possible to express 
any mathematical proposition by a formula” (Gödel, 1933, p. 45). Also, the 
methods of proof have been made completely formal. The rules of inference, 
by which these methods are specified, refer only to the outward structure of 
formulas and not to their meaning. Thanks to that, they are completely precise 
and univocal. This makes it possible to specify what we mean by concepts such 
as ‘proof ’ or ‘provable’. It is not clear whether we can speak at all about these 
concepts without the specification of a formal system, since it only then becomes 
clear which methods of proof are allowed. It is apparent Gödel thought so, as 
suggested by his criticism of Finsler’s proof of incompleteness. The main reason 
why Finsler’s proof of incompleteness was not acknowledged by mathematicians, 
Gödel claimed, is the fact that he did not specify any formal system to which 
his proof would refer. Finsler had tried to show that not every mathematical 
truth can be proven by some logically unobjectionable method. But if we do not 
specify some formal system, it is not clear which methods of proof are allowed, 
since: ”... the question of what is a ‘logically unobjectionable proof ’ is answered 
differently by different mathematicians” (Gödel, 2003, p. 409).

The importance of formalization for Gödel therefore lies in the fact that 
it provides us with a way to specify the meaning of concepts such as ‘proof ’ 
and ‘provable’, i.e. it helps us to clearly determine which methods of proof are 
allowed, and to become fully aware of their consequences. This is accomplished 
by representing methods of proof as methods for transforming linguistic 
expressions, i.e. formulas. Of course, that does not necessarily mean mathematical 
propositions are considered to be merely linguistic expressions without meaning. 
The goal is to make their meaning irrelevant to deducing logical consequences 
from them. The disregard for the meaning of symbols proves to be very fruitful. 
Although formal rules of inference refer only to the structure of formulas and 
not to their meaning, deduction according to these rules can elucidate and 
expand our knowledge of some mathematical subject.

However, as Gödel has shown, the complete formalization of mathematics 
is unattainable. In other words, mathematics cannot be reduced to some set of 
mechanical principles for transformation of formulas. Some non-mechanical 
procedures will always be needed, and these would “include the use of abstract 
terms on the basis of their meaning” (Gödel, 1934, p. 370, fn. 36).
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3.2. The meaning of mathematical formulas

When it comes to the meaning of mathematical or any other language, we 
can discern two of its aspects: the intensional and the extensional. It is difficult 
to determine precisely what these aspects consist in, or to draw a sharp line 
between them. Yet some intuition about that difference can be gathered from 
examples. One example can be the term ‘function’. Its intensional meaning 
would consist in some formula or rule by which its value for an argument can be 
calculated. Its extensional meaning, on the other hand, would consist in a certain 
set of ordered pairs, the first component of which represents an argument and 
the second the value of the function for that argument. Since the middle of the 
nineteenth century, extensional meaning has been regarded as more important 
than intensional in mathematics. Functions have become understood as sets of 
ordered pairs exclusively. That opened up the possibility of studying the abstract 
properties of some function without knowing the rule by which its value for 
some argument could be found. This extensional orientation is closely related 
to the concurrent revolution in mathematics that consisted in focusing on 
understanding rather than calculating. For this reason, the formulas that make 
calculations possible became neglected. (cf. Devlin, 2003).

It seems that we have reasons to believe Gödel went against the dominant 
orientation in considering intensional meaning to be the most important in 
mathematics, and thought that returning to intensional considerations would 
be of vital significance. However, returning to intensional considerations would 
not mean returning to the conception of mathematics according to which 
mathematics deals with calculations only. Gödel thought that intensional 
considerations could in fact lead to a better understanding of mathematical 
reality. This claim should be justified and explained in view of Gödel’s platonism 
in the remainder of this chapter. The views presented here will be based mostly 
on Gödel’s work on extending the finitary standpoint in arithmetic and on his 
ideas about set theory.

3.2.1. Gödel’s consistency proof for arithmetic
As we have seen earlier in the paper, the consistency of finitary arithmetic 

cannot be proven by using only concrete notions, such as those which refer to 
linguistic symbols. The consistency proof will also require taking the meaning 
of these symbols into account. But which aspect of their meaning should be 
used, according to Gödel? It is not all that difficult to answer this question 
since Gödel himself proposes one consistency proof (Gödel, 1958, 1972). The 
central concept he uses is the concept of computable function of finite type on 
the natural numbers. According to Gödel, the concept of function in that proof 
should be understood in its intensional meaning, i.e. as “an understandable and 
precise rule associating mathematical objects with mathematical objects” (Gödel, 
1953/9, p. 341, fn. 20). So, in his consistency proof, Gödel uses intensional 
meaning of the concept of function, and also the concept of intensional equality 
between functions. In his letter to Bernays Gödel notices that “mathematicians 
will probably raise objections against that, because contemporary mathematics 
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is thoroughly extensional and hence no clear notions of intensions have been 
developed” (Gödel, 2003, p. 283).

That Gödel had certain doubts as to the correctness of purely extensional 
understanding of functions is suggested by the following: “The concept ‘analytic 
function’ is a good example of the extensional version of something intensional, 
namely, monogeneity. It is altogether a question whether this is the correct 
version. What speaks against that is that, for example, <the> Г-function is not 
uniquely determined, which yields a ‘disappointment’ just as in the propositional 
calculus, which ‘extensionalizes’ the concept ’deduction’ and maybe ’truth’” 
(Gödel, Max Phil X, p. [87]).

We have thus far found some evidence that Gödel thought intensional 
meaning is important in mathematics. But how can this be justified from a 
platonistic point of view? The answer might lie in Gödel’s distinct version 
of platonism, according to which, aside from mathematical objects such as 
numbers and sets, the concepts are also objectively existent. This view allowed 
Gödel to claim that our knowledge of mathematical objects is gained through 
understanding concepts under which those objects fall. It appears Gödel thought 
that language, due to its intensional meaning, could reveal some aspects of 
independently existing concepts to us, and in that way improve our mathematical 
knowledge. It seems that we can find justification for such an interpretation in 
Gödel’s view on set theory, which he considers the fundamental mathematical 
discipline.

3.2.2. Gödel on set theory
The Zermelo-Fraenkel axiomatization (ZF) represents, in Gödel’s opinion, 

a satisfactory formalization of set theory. An interpretation of that formalism 
leads us to a specific view on sets and the way they are formed. According to 
this interpretation, sets constitute a kind of cumulative hierarchy. The universe 
of sets is divided into levels which reflect the order of their formation. A set can 
be formed only if all of its elements are already given. So, on the first level, there 
would only be an empty set, and any set on a higher level would be formed by 
applying the power-set operation to a set on a lower level. On the second level, 
there would be a singleton with the empty set as its only element; on the third, 
the set with the singleton and the empty set as its elements, etc. When all finite 
sets are formed in this way, it is possible to form their union, which would be an 
infinite set. This infinite set can then function as the basis for a new hierarchy of 
sets, and so on.

The process of set formation could be continued indefinitely. Every given 
set represents the basis for the formation of some new set, etc. It is thus possible 
to climb indefinitely in the hierarchy of sets, without ever reaching the set of 
all sets. However, the Zermelo-Fraenkel theory describes only one part of that 
hierarchy, and is, in that sense, incomplete. The existence of some set-theoretical 
propositions which are undecided by its axioms represents evidence for that 
incompleteness. The most famous proposition of this kind is Cantor’s continuum 
hypothesis (CH). What is claimed by this hypothesis is that the cardinal number 
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of the continuum is the first cardinal number bigger than the cardinal number 
of the set of natural numbers. According to Gödel, the fact that this hypothesis 
is not decided by the accepted axioms should not be taken as evidence that 
it does not have a truth value, but as evidence that ZF axioms do not give a 
complete description of the universe of sets. However, that description can be 
complemented by adding some new axioms to those already accepted and some 
of these axioms might solve CH. Therefore, the undecidability of CH does not 
necessarily lead to the ramification of ZF theory into one in which CH is true, 
and the other in which it is false. In Gödel’s words: “I don’t think realists need 
expect any permanent ramifications as long as they are guided, in the choice 
of the axioms, by mathematical intuition and by other criteria of rationality” 
(Gödel, 2003, p. 372). Some of these axioms will, for example, refer to sets formed 
on some very high levels in set hierarchy; that is, they will claim the existence 
and properties of some very large sets or very large cardinal numbers. We can 
hope that some such axioms would solve CH and other currently undecidable 
problems. However, we cannot expect that any finite axiomatization will be 
sufficient for a complete description of the universe of sets. This follows from 
the principle of set formation, by which it is always possible to form some new 
set to which none of the accepted axioms refer. This is in perfect agreement with 
Gödel’s general results on incompleteness which concern every formal theory, 
set-theory included. Every such theory could be extended. In set theory, the 
extensions are possible by the addition of some new axioms. So the important 
question is: How can we discover new axioms in set theory? What is their 
justification?

According to Gödel, we can discern two forms of justification for new 
axioms. The first way to justify some axiom of set theory is to show that it 
follows from the meaning of the concept of set. Gödel believed that certain new 
axioms, as well as all the accepted ones, can be justified in this way. As soon as 
we understand the meaning of ‘set’, it should become obvious to us that these 
axioms are true. Gödel considers these axioms as possessing a kind of intrinsic 
necessity. We could say that they explicate the meaning of the concept of set 
− more precisely, the iterative aspect of its meaning (cf. Gödel, 1964, p. 260). It 
is crucial for Gödel to emphasize that the meaning of the concept of set is not 
something man-made, but completely independent of humans, their knowledge, 
and language.

So the central question becomes: how do we come to understand the meaning 
of independently existing concepts, such as the concept of set, and determine 
which axioms follow from it? Gödel seemed to think that understanding 
mathematical concepts in fact consists in understanding the meaning of 
mathematical terms. He says therefore: “’Trying to see (i.e. understand) a 
concept more clearly’ is the correct way of expressing the phenomenon vaguely 
described as ‘examining what we mean by a word’” (Hao Wang, 1996, p. 233). 
Gödel here refers most probably to the intensional meaning of mathematical 
terms. It seems that the intensional meaning of the term ‘set’ consists for 
Gödel in the concept of set, while its extensional meaning consists of all sets 
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belonging to the set hierarchy. If that is the case, then we have found the answer 
to why Gödel thought the intensional meaning of language is so important in 
mathematics. The reason is that at least some mathematical propositions are true 
owing to the meaning of concepts occurring in them, and not because things 
happen to be such and such in the world of mathematical objects. Analysis of 
the intensional meaning of mathematical terms would be crucial for identifying 
such mathematical propositions.

But Gödel also claimed there is another way to justify some axiom − not 
on the basis of its meaning, but its success. Some axioms can contribute to 
solving some previously unsolvable problems, or can make the solutions to some 
problems simpler or more elegant (Gödel, 1964, p. 261). As already mentioned, 
there are some set-theoretical propositions, such as CH, that are undecidable by 
ZF axioms. Gödel held that if some axiom makes such propositions decidable 
and produces other positive consequences, this represents good evidence that 
this axiom is true, i.e. it really tells us something about the universe of sets. 
New axioms can have consequences not only within set theory, but on formal 
arithmetic as well (cf. Gödel, 1933, p. 48). According to Gödel, we could even 
conceive of a much higher degree of verification than this: “There might exist 
axioms so abundant in their verifiable consequences, shedding so much light 
upon a whole discipline, and furnishing such powerful methods for solving given 
problems (and even solving them, as far as that is possible, in a constructivist 
way) that quite irrespective of their intrinsic necessity they would have to be 
assumed at least in the same sense as any well-established physical theory” 
(Gödel, 1947, pp. 182–183).

But even if our reason for accepting these axioms is not our insight that they 
follow from the meaning of the concepts occurring in them, this is still not to 
say that they are not true owing to that meaning, but only that we come to know 
this a posteriori. So Gödel might have actually thought that all mathematical 
propositions are analytic, the only difference being in the way we discover their 
truth. Some of his claims confirm this supposition.

3.2.3. Mathematical propositions are analytic
Gödel deems it very important that we clearly distinguish between two 

possible meanings of the term ‘analytic proposition’. According to the first one, 
an analytic proposition is true if and only if it follows from definitions of the 
terms occurring in it. By using these definitions, we should be able to reduce 
such propositions to sentences of the form: A=A. According to the second, 
analytic propositions are true owing to the meaning of the concepts occurring in 
them, meanings which are, as Gödel held, not created by our definitions, and are 
not in any other way dependent on our language. According to Gödel, we can 
only say that mathematical propositions are analytic in the second sense. Even if 
analytic, mathematical propositions do have content. This means mathematical 
knowledge is not tautological knowledge. It is the knowledge about the meaning 
or nature of independently existing concepts. Because our understanding of 
these concepts can be limited, mathematical knowledge, although analytic, can 
be indistinct or incomplete.
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Gödel’s view that mathematical propositions are analytic justifies the idea 
that intensional meaning of mathematical terms is the most important in 
mathematics. Namely, the intensional meaning of these terms should reveal 
some aspects of independently existing concepts, and the understanding of 
these concepts is what mathematical knowledge consists in. Before we continue 
exploring this idea, one possible objection should be answered. It is very 
common among Gödel’s interpreters to suppose that Gödel thought there is 
some special cognitive power that provides us with immediate knowledge of 
the abstract world. This is commonly supposed to be the best explanation of 
Gödel’s stand on mathematical intuition. However, this interpretation has been 
criticized. It has been shown that mathematical intuition need not be conceived 
as some mystical faculty granting us immediate and instantaneous knowledge 
of the abstract world. According to the alternative interpretation, mathematical 
intuition is in fact the understanding of concepts (Adžić, 2014, pp. 142–153).

3.3. Mathematical intuition

What could suggest an interpretation according to which Gödel believed 
mathematical intuition to be some special faculty giving us an immediate insight 
into the abstract world is Gödel’s comparison between mathematical intuition 
and sense perception. For example, Gödel says that: “... despite their remoteness 
from sense experience, we do have something like a perception also of the objects 
of set theory, as is seen from the fact that the axioms force themselves upon us as 
being true. I don’t see any reason why we should have less confidence in this kind 
of perception, i.e. in mathematical intuition, than in sense perception...” (Gödel, 
1964, p. 268). This might lead us to believe that Gödel thought mathematical 
intuition is a kind of perception of the abstract objects and their relations. 
However, the role that Gödel ascribes to mathematical intuition in developing 
some mathematical theory can hardly be explained from that point of view. For 
example, Gödel thought that mathematical intuition can justify the accepted and 
certain new axioms of set theory. But these axioms can hardly be justified by 
some kind of perception of sets. Take the axiom of extensionality, according to 
which any two sets with the same elements are identical. What would lead us 
to believe that this axiom is true is rather our understanding of the concept of 
set, i.e. of the extensional nature of sets. Gödel himself tried to elucidate that 
the acceptance of set-theoretical axioms goes hand in hand with understanding 
the concept of set. Therefore, it seems that the interpretation that identifies the 
knowledge characterized as mathematical intuition with the understanding of 
mathematical concepts is more plausible.

It would be useful, for the purpose of understanding Gödel’s view on 
mathematical intuition, to have in mind the difference, highlighted by Parsons 
(1995, p. 65), between intuition of some object, and intuition that something is 
true. Gödel would consider the second kind of intuition closely related to the 
understanding of concepts. The following quote may suggest that he was aware 
of the possibility for distinguishing between these two kinds of intuition: “Sets 
are objects but concepts are not objects. We perceive objects and understand 
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concepts. Understanding is a different kind of perception: it is a step in the 
direction of reduction to the last cause” (Hao Wang, 1996, p. 235, no. 7.3.12). 
Gödel seems to take the second kind of intuition to be more important. We first 
come to understand concepts, and in that way we also gain knowledge about 
mathematical objects encompassed by them (cf. Adžić, 2014, p. 110, 145). This is 
what Gödel could mean by the following: “It should be noted that mathematical 
intuition need not be conceived of as a faculty giving an immediate knowledge 
of the objects concerned. Rather it seems that, as in the case of physical 
experience, we form our ideas also of those objects on the basis of something 
else which is immediately given” (Gödel, 1964, p. 268). Gödel fails to specify 
what exactly is immediately given, but it is plausible that he was referring to 
concepts. By understanding some concept, we learn what the properties of 
mathematical objects encompassed by it are. It remains unclear, though, how 
we gain any intuition of mathematical objects in this way. However, Gödel did 
not seem to think this kind of intuition, if it exists, has any important role in 
arriving at mathematical knowledge. Because of this, it seems that we can ignore 
the possibility of that kind of intuition without the danger of misrepresenting 
Gödel’s view.

So the relevant question about Gödel’s theory of mathematical knowledge is: 
How do we come to understand some mathematical concept? And in what way 
can that understanding be further improved? There are some grounds to believe 
that Gödel thought our understanding of some concept can be improved by 
establishing and developing some theory by which the meaning of that concept 
should be expressed. Reflection on some formalized theory, such as finitary 
arithmetic or set theory, can lead us to new knowledge. In the case of set theory, 
this is the knowledge about the truth of some new set-theoretical axioms. Gödel 
believes we would not be able to understand these axioms if set theory was not 
developed to a certain extent: “...in order only to understand the first transfinite 
axiom of infinity, one must first have developed set theory to a considerable 
extent” (Gödel, 1953/9, p. 353, fn. 43). The understanding of some concept is 
neither an instantaneous and immediate insight into its content, nor is it always 
complete and immune to error. Certain mistakes in understanding some concept 
could be revealed in the course of developing a theory by which the meaning 
of that concept should be expressed. This was the case with so-called naïve set 
theory, paradoxes of which brought to light the inadequacy of our understanding 
of the concept of set (cf. Gödel, 1951, p. 321). But these paradoxes also pointed 
in the direction of how we should further develop our understanding of that 
concept. In this way, our understanding of the concept of set was improved by 
our use of it. We can understand the following claim by Gödel as emphasizing 
precisely that point: “What Turing disregards completely is the fact that mind, in 
its use, is not static, but constantly developing, i.e., that we understand abstract 
terms more and more precisely as we go on using them, and that more and more 
abstract terms enter the sphere of our understanding” (Gödel, 1972a, p. 306).

Hence, it seems that we have no reason to suppose that Gödel thought there 
is some special faculty granting us immediate knowledge of abstract objects, 
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such as sets, or making us able to instantly understand the whole content of 
some concept. If that is the case, then the question is why Gödel talked about 
mathematical intuition at all? Why did he not use the term understanding instead, 
thus preventing any false interpretations? And what does the similarity between 
mathematical intuition and sense perception consist in, if not the immediacy of 
the knowledge they provide us with?

The main basis for Gödel’s comparison between mathematical intuition and 
sense perception could be the fact that concepts, the understanding of which 
Gödel characterizes as mathematical intuition, are primitive (Adžić, 2014, p. 
147). This is why we cannot hope to gain knowledge of them by analyzing or 
defining them in terms of some more basic concepts. The understanding of 
primitive concepts cannot be the result of deduction, and only in that sense 
can we say that it is immediate. Mathematical intuition is needed if deduction 
is at all possible. Gödel seemed to think that by using mathematical intuition 
we discover not only mathematical axioms, but also the rules of inference. 
For example, comparing mathematical intuition with sense perception, Gödel 
says: “It is arbitrary to consider ‘This is red’ an immediate datum, but not so 
to consider the proposition expressing modus ponens or complete induction” 
(Gödel, 1953/9, p. 359). Another similarity which, according to Gödel, exists 
between mathematical intuition and sense perception is that both provide us 
with some new knowledge. In this context, Gödel speaks about mathematical 
intuition as the reason. He says: “The ‘inexhaustibility’ of mathematics makes 
the similarity between the reason and the senses still closer, because it shows that 
there exists a practically unlimited number of independent perceptions also of 
this ‘sense’” (Gödel, 1953/9, p. 353. fn. 43).

The analogy between sense perception and mathematical intuition might 
be important for Gödel mainly because it should provide him with one of the 
arguments for platonism. The point that Gödel tries to emphasize with that 
comparison might be that there are equally good reasons to believe in the world 
of abstract objects and concepts as there are reasons to believe in the physical 
world. One, perhaps basic, reason for our belief in the physical world is that 
by supposing that there are some independently existing physical beings which 
have causal influence on us, we can explain the fact that sense perceptions force 
themselves upon us. But there is also the need, Gödel thought, for explaining the 
fact that some knowledge of the mathematical world also forces itself upon us 
as soon as we come to understand the meaning of basic mathematical concepts. 
This should convince us that we truly discover rather than invent truths about 
mathematical objects.

It seems then that the goal of Gödel’s comparison between mathematical 
intuition and sense perception was not to convince us of some mystical faculty 
which gives us immediate knowledge of the abstract world. In fact, we have good 
reasons to believe that, according to Gödel, the way to gain knowledge of that 
world is by understanding the concepts. If that is the case, then we should try to 
answer the question about the role of language in mathematics by considering 
what the role of language is in our understanding of mathematical concepts.
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4. Language and concepts

The foregoing discussion was intended to point in the direction in which 
we should look for the role of language in mathematics. I will consider it 
established that Gödel believed mathematical knowledge is gained through the 
understanding of mathematical concepts. What we should try to determine then 
is a way in which this understanding can be improved by the use of language. 
We can begin by considering the role of formal language in our understanding 
of concepts.

4.1. Concept and proof

As pointed out earlier in the paper, the great importance of formal 
systems is due to the fact that they allow us to make the methods of proof fully 
precise. Only when some formal system is specified it is possible to determine 
whether or in which way some mathematical proposition can be proven. And 
mathematicians do consider formal proof to be satisfactory evidence that some 
mathematical proposition is true. But the way in which mathematical truth is 
understood from the platonistic point of view, that is, as a correct description of 
an independently existing abstract world, makes it difficult to explain how formal 
proofs can guarantee the truth of mathematical propositions (cf. Tait, 1986, pp. 
341–345). To explain this from the platonistic point of view, some account of 
the relationship between formal systems and the abstract world would have to 
be given. I believe Gödel would be able to do that. What he could claim is that 
deduction in some formal system represents one aspect of the understanding 
of mathematical concepts which belong to the abstract world. First of all, we 
cannot build a formal system without axioms or rules of inference. It seems 
that Gödel would claim that we discover these axioms and rules of inference 
by understanding the meaning of basic mathematical concepts. We could thus 
say, for example, that the axioms of formal arithmetic express the meaning of 
the concept ‘natural number’. Some aspects of that meaning are expressed by the 
axioms describing fundamental properties of the successor operation and others 
by the axioms that describe binary operations, i.e., addition and multiplication. 
On the other hand, set-theoretical axioms express the meaning of the concept of 
set, and the discovery of new axioms would represent the improvement of our 
understanding of that concept. Once we have arrived at certain axioms, by using 
the rules of inference, we can derive their logical consequences. In that way, our 
understanding of the concepts contained in these axioms can be improved. If 
axioms are true owing to the meaning of the concepts contained in them, then so 
are their logical consequences. These logical consequences can therefore reveal 
to us some new aspects of the meaning of concepts expressed by the axioms. In 
this way, deduction can deepen our understanding of mathematical concepts.

At one point, Gödel says that “the concept of concept and the concept 
of absolute proof may be mutually definable” (Hao Wang, 1996, p. 188, no. 
6.1.13.). The preceding discussion can help us in grasping the meaning of this 
enigmatic claim. Gödel takes the concept of absolute proof to be closely related 
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to the concept of absolute provability. Absolute provability would presuppose the 
provability of every true proposition of some kind. The relationship between the 
concept of concept and the concept of absolute provability can then be explained 
by the fact that a complete understanding of some concept should enable us to 
prove every true proposition containing it. On the other hand, if we are able 
to prove every true proposition containing some concept, that means we have 
gained a thorough understanding of that concept. However, we have seen 
that there is no consistent formal system of considerable strength (i.e. which 
contains at least formal arithmetic) within which all true propositions of some 
mathematical discipline can be proven. This fact raises the question whether, 
by speaking of absolute provability, Gödel presupposes the possibility of some 
methods of proof which would not be related to any formal system, but which 
would be possible if we were able to gain the complete understanding of some 
concept. It is important to answer this question, since it is related to the question 
of the possibility of some language-unmediated understanding of concepts.

4.1.1. Gödel on absolute provability
The concept of provability is an ambiguous concept, since which propositions 

are provable depends on the chosen formal system. Another epistemological 
concept − the concept of computability used to be in a similar way dependent 
on the choice of formalism. But, according to Gödel, by introducing Turing-
computability we have acquired “an absolute definition of an interesting 
epistemological notion, i.e., one not depending on the formalism chosen” 
(Gödel, 1946, p. 150). Some function of natural numbers is Turing-computable 
if and only if it is computable in arithmetic. So thanks to the notion of Turing-
computability, we can speak of the functions that are computable independently 
of the chosen formal system.

On the other hand, the concept of provability can never be specified in this 
way. As we have seen when considering formalization of set theory, there will 
always be some proposition, which is not provable in the given formal system, 
but which becomes provable if we extend that formal system by adding some 
new axioms to it. That is why there can be no formal system which contains 
every possible proof. Still, that does not mean, according to Gödel, that we 
cannot specify the concept of absolute provability in some non-constructive 
way. We just need to find a way to correlate and describe all possible extensions 
of set-theoretical formal systems. And this can be done. Namely, all extensions 
of formalism in set theory can be made by adding some new axioms to it. 
Although we cannot foresee what form all these axioms might have, we can 
characterize them in some way. “It is certainly impossible to give a combinatorial 
and decidable characterization of what an axiom of infinity is; but there might 
exist, e.g., a characterization of the following sort: An axiom of infinity is a 
proposition which has a certain (decidable) formal structure and which in 
addition is true” (Gödel, 1946, p. 151). The ‘absolute provability’ can then be 
taken to stand for derivability from these axioms. In that way we would attain a 
concept of provability that does not depend on our choice of formalism. But that 



Jovana Kostić: Gödel and the Language of Mathematics 61

concept would not be independent of formalisms in general. We are led in its 
characterization by the existing formal system and the ideas of its extensions that 
are suggested by this formal system itself. This concept is absolute in the sense 
that it embraces all the propositions expressed in the language of set theory (that 
is, propositions formulated by the terms ‘set’, ‘∈’, and logical constants), which 
are provable in some formal system or its extensions. “The question whether the 
two epistemological concepts considered [besides provability, Gödel considers 
here the concept of definability], or any others, can be treated in a completely 
absolute way is of an entirely different nature” (Gödel, 1946, p. 153). What Gödel 
means by this could be the possibility of treating the concept of provability in set 
theory independently of the way in which set theory is formalized. It is not clear 
whether we can make sense at all of such a concept.

We can conclude that by absolute provability in set theory Gödel meant 
the provability which would be possible if we were able to gain the complete 
understanding of the concept of set. And that understanding would be expressed 
in the formal systems, by stronger and stronger axioms of infinity. This could 
explain the meaning of the following claim of Gödel: “The idea of proof may 
be non-constructively equivalent to the concept of set: axioms of infinity and 
absolute proofs are more or less the same thing” (Hao Wang, 1996, pp. 268–269, 
no. 8.4.21).

4.2. Concepts and the syntax of language
So it seems that the formal proofs do contribute to our understanding 

of mathematical concepts. But the only aspect of language relevant to these 
proofs is its syntax. The meaning of symbols of some formal language, i.e. their 
interpretation, is completely irrelevant for formal deductions. It follows that it 
is the syntax of language that can improve our understanding of the abstract 
concepts. The question is how is that possible. What syntax has to do with the 
meaning of objectively existing concepts?

There is straightforward evidence that Gödel thought that the syntax of 
language has an important role in improving our understanding of concepts. 
Namely, Gödel claimed that: “The fact that the understanding of concepts 
becomes significantly clearer by the construction of their sensory images [i.e., 
words] seems absurd at first [could the perception of some landscape become 
clearer by sketching a picture of it?]. But the reason might be that the material 
(i.e., the finite combinatorics) already contains, in some way, the image of the 
conceptual so that only this can really be depicted (or depicted simply). This 
would mean: the truth is what has the simplest and the most beautiful symbolic 
expression. (This means: the finite combinatorics already contains a ‘picture of 
God’)” (Gödel, Max Phil X, p. [18]).

Gödel seemingly thought that if we are to explain the fact that the syntax 
of language contributes to our understanding of mathematical concepts, we 
have to suppose that these concepts direct somehow our use of mathematical 
symbols. In other words, we have to suppose that the syntax of the language of 
mathematics is determined by its intensional meaning, i.e. by the concepts which 
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are expressed in that language. We could understand these concepts as a kind 
of techniques for using the linguistic symbols. If the concepts are understood in 
this way, it becomes clear how language can improve our understanding of them. 
This idea could also help us understand the importance of the criteria usually 
used in the choice of a formal system, such as its simplicity or elegance. The 
fact that some formal system satisfies these criteria can be the sign that it really 
depicts some aspects of the conceptual world. That the world of concepts is 
independently existent is shown by the fact that there is absolutely no freedom in 
deriving theorems from the axioms that express the meaning of these concepts. 
Mathematicians cannot decide what will be the theorems of their formal system. 
The outcome of some deduction can come as a surprise to them. This should 
make us believe that by deducing in some formal system they truly discover, 
rather than invent, the properties of mathematical concepts which should 
somehow underlie that formal system (cf. Gödel, 1951, p. 314).

To sum up, Gödel would be able to acknowledge and partly explain the role 
of language in mathematics on account of his view that mathematical knowledge 
is conceptual. However, he did claim that the role of language in mathematics, 
and also in philosophy, should not be overestimated. It will be worthwhile 
to consider what could be his reasons for claiming that − it can help us to 
understand better his views on language.

4.3. Understanding the role of language in the right way
“The overestimation of language is deplorable” (Hao Wang, 1996, p. 180, 

no. 5.5.7). The context in which Gödel makes this claim might be of primary 
importance for understanding its intent. According to Hao Wang, it was one of 
the points in Gödel’s criticism of Wittgenstein and his influence on subsequent 
philosophers. One way in which Wittgenstein influenced these philosophers is 
by the idea that great philosophical questions can be solved by linguistic analysis. 
As we have seen, it seems that Gödel thought as well that language can help us 
improve the understanding of concepts thanks to which we could solve some 
mathematical and also some philosophical problems. How then the cited claim 
fits with this view?

The main reason for Gödel’s discontent with the use of linguistic analysis in 
philosophy may be the fact that the way the philosophers of his time understood 
the role of language in solving philosophical problems is very different from the 
way that role was understood by Gödel. It was common among philosophers of 
that time to consider language to be purely conventional. The syntax and the 
meaning of language were considered to be something man-made, which does 
not conform to any external principle or rule. Also, philosophical questions and 
problems were taken to be the consequence of an incorrect use of language. This 
is why it is believed that, by making evident the mistakes that are present in 
the philosophical use of language, linguistic analysis can help us resolve these 
questions. It seems to me that Gödel opposed exactly this conventional view 
on language and the proposed explanation of its role in philosophy. According 
to Gödel, the meaning of language is certainly not man-made, but consists 



Jovana Kostić: Gödel and the Language of Mathematics 63

in independently existing concepts, their properties and relations. Owing to 
this, language can have an important role in solving those philosophical or 
mathematical problems which we can characterize as conceptual. The reason 
why Gödel insisted that language is just a correspondence between symbols and 
abstract entities might be to emphasize that what is important about language 
are not its conventional aspects, but the fact that it expresses the meaning of 
abstract concepts. Only thanks to that language can have an important role in 
philosophy.

Gödel takes his main task in philosophy to be the analysis of the highest 
concepts (cf. Floyd, Kanamori, 2015). What should contribute to this analysis is, 
Gödel believed, the reading of some philosophical texts. However, “a substitute 
for the reading of philosophers is reading some good books with precise analyses 
... learning of language [Hebrew, Chinese, Greek] and the precise definition of 
words and concepts that occur” (Gödel, Max Phil IX, p. [79], as cited in: Floyd, 
Kanamori, 2015). One result of the analysis of concepts should be the formal 
theory of concepts, which would, in Gödel’s opinion, form the central part of 
logic. This theory should improve our understanding of the formal characteristics 
of concepts and help us solve so-called intensional paradoxes. Gödel does not say 
much about how he thinks this theory should look like and what would be the 
way to establish such a theory, but we can form some ideas about that following 
his remarks. What we should consider is what role linguistic analysis has in the 
theory of concepts that Gödel envisages.

4.4. The theory of concepts

Although we have some intuitions about formal concepts, such as ‘concept’, 
‘proof ’, ‘proposition’, etc., these intuitions are rather rudimentary. This should, in 
Gödel’s opinion, be evident from the existence of so-called intensional paradoxes. 
Intensional paradoxes are, according to Gödel, those related to concepts and 
independent of the language in which these concepts are expressed. On that 
basis Gödel makes a difference between intensional and semantic paradoxes, 
which are the paradoxes of some particular language and which, Gödel believed, 
had been solved in a satisfactory way. An example of a semantic paradox is the 
one concerning the predicate ‘true in this language’. This paradox arises if we 
ask the question whether the sentence “This sentence is not true” is true or not. 
However, as soon as we realize that ‘true in language L’ cannot be a predicate 
of L, the paradox is resolved. Unlike semantic paradoxes, which are related to 
some particular language, “conceptual paradoxes can be formulated without 
reference to language at all” (Hao Wang, 1996, p. 271, no. 8.5.10). An example of 
intensional paradox is the paradox of the concept of concepts not meaningfully 
applicable to themselves. This paradox arises if we ask whether this concept is 
meaningfully applicable to itself or not. The existence of intensional paradoxes 
should not, Gödel thought, raise any doubts as to the objective existence of 
concepts. On the contrary, it should make us believe that subjectivism is wrong − 
the fact that we cannot use the concepts in an arbitrary way reveals that they are 
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not our creation. By revealing the formal characteristics of objectively existing 
concepts, the theory of concepts should help us resolve these paradoxes.

What would such a theory look like? Gödel suggests that in establishing the 
theory of concepts we should take set theory for our guide and try to identify 
the intensional counterparts of its axioms. The primitive relation of something 
being an element of some set would be replaced by the relation of something 
falling under some concept or the applicability of concept to something. Some 
important differences between these two theories would, however, exist. One 
difference is that, contrary to sets which cannot be the elements of themselves, 
some concepts, such as the concept of concept, are applicable to themselves, 
so the theory of concepts should allow that. The concept of concept is also the 
one which encompasses all the others. So, the theory of concepts should also 
allow for the existence of the universal concept, although in set theory there is 
no such thing as a universal set. However, some constraints on the applicability 
of concepts would have to be specified, so that the intensional paradoxes could 
be solved. “It might even turn out that it is possible to assume every concept to 
be significant everywhere except for certain ‘singular points’ or ‘limiting points’, 
so that the paradoxes would appear as something analogous to dividing by zero” 
(Gödel, 1944, p. 138). The axioms of the theory of concepts should state the 
properties of primitive concepts and by using these axioms we should be able to 
prove the properties of the concepts composed out of primitive concepts. Gödel 
believed that we have some proper ideas as to which concepts are primitive. 
As examples Gödel gives the following list of concepts: negation, conjunction, 
existence, universality, object, concept, the relation of something falling under 
some concept and so on (Hao Wang, 1996, no. 8.6.17., 9.1.26). What we still do 
not have is a clear intuition about the properties of these concepts which should 
be stated by the axioms. If we are able to cultivate our intuition of primitive 
concepts and to formulate axioms about them, we will come to the theory of 
concepts. What would be the result of such a theory? In which way could that 
theory improve our mathematical knowledge? It might be the case that Gödel 
thought the theory of concepts would elucidate the basic principles of intensional 
considerations which are, in his view, very much present in mathematics. So 
we might hope that the theory of concepts will have the role similar to that 
which Gödel ascribes to predicate logic. Namely, predicate logic is useful in 
mathematics mostly because it specifies the allowed rules of inference. But these 
rules are based solely on the extensional meanings of mathematical formulas. 
Gödel perhaps thought that the theory of concepts should provide us with some 
new, intensional, rules of inference.

So the basic question is: How can we cultivate our intuition of primitive 
concepts and discover the axioms of the theory of concepts? Did Gödel think 
that the intensional analysis of language can help us do that? There are actually 
some reasons to doubt that this is what Gödel had in mind. In what follows I 
will identify these reasons and try to determine whether they undermine the 
interpretation of Gödel’s views on language presented here.
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4.4.1. The role of linguistic analysis in the theory of concepts
The interpretation of Gödel’s views on language presented in this paper 

suggests that Gödel would take language to provide guidance in establishing the 
theory of concepts. However, it is not so clear how could linguistic analysis lead 
to the theory of concepts as Gödel envisages it. First of all, it seems that Gödel 
was not using any linguistic criteria for grouping certain concepts as primitive. 
The concepts that are primitive in his view are expressed in language by 
different grammatical categories. Among them there are connectives (negation, 
conjunction, existence, universality), unary predicates (object, concept) and 
binary predicates (relation of something falling under some concept). It is not 
clear what Gödel’s criterion for choosing exactly these concepts as primitive 
is. Worse than that, it is not even clear according to which criteria are these 
concepts at all. Gödel characterizes concepts as “the properties and relations 
of things existing independently of our definitions and constructions” (Gödel, 
1944, p. 128). However, we could hardly say that negation or universality is the 
property of some thing or the relation between things.

If he had used linguistic criteria, he would most probably have chosen 
predicates as the main subject of the analysis, since properties and relations 
are expressed by them in language. The theory of concepts he envisaged would 
then deal with the intensional analysis of predicates. However, it is unlikely that 
Gödel had that in mind. The main motive for establishing the theory of concepts 
for Gödel seems to be the existence of intensional paradoxes, one of which is 
the already mentioned paradox of the concept of concepts not meaningfully 
applicable to themselves. And in fact, there is a paradox analogous to this one, but 
referring to predicates, known as the Grelling-Nelson paradox. Among predicates 
of some language there are those which do not describe themselves. Such 
predicates are called heterological and the examples are ‘Serbian’, ‘unwritten’, etc. 
The paradox arises if we ask whether ‘heterological’ is a heterological predicate or 
not. However, it is questionable whether Gödel would identify his paradox of the 
concept of concepts not meaningfully applicable to themselves with the Grelling-
Nelson paradox. A negative answer is more probable, since Gödel insisted on the 
difference between intensional and semantic paradoxes, which should consist in 
the fact that intensional paradoxes are language independent.

There are thus some reasons to doubt that Gödel considered linguistic 
analysis to be the right method for establishing the theory of concepts. Another 
reason is Gödel’s interest in Husserl’s phenomenology which he presents as the 
method that could help in clarifying the meaning of concepts (Gödel, 1961, pp. 
383–385). For some of Gödel’s commentators, specifically for Parsons, Gödel’s 
interest in the philosophy of Gotthard Günther is also symptomatic. Gödel 
held a long correspondence with Günther, which was mostly about Günther’s 
neo-idealistic program of elucidating the contents of consciousness. Parsons 
emphasized the lack of Gödel’s response to Günther’s ideas in which the 
importance of linguistic analysis for an account of thought and its contents (such 
as concepts) should be stressed (Gödel, 2003, p. 475). According to Parsons 
and other commentators, Gödel’s interest in Günther’s and Husserl’s philosophy 



66 BELGRADE PHILOSOPHICAL ANNUAL Vol. XXVIII (2015)

was motivated by his search for the right method for establishing the theory 
of concepts. However, it seems that these philosophies do not ascribe much 
importance to language or linguistic analysis.

What this might suggest is that Gödel thought the role of linguistic analysis 
in the understanding of concepts is limited. The reason might be his view on the 
nature of concepts. Gödel insisted that the properties and relations of concepts 
are independent of the language in which they are expressed. Perhaps because of 
that Gödel thought that language cannot help us to discover all of the properties 
of concepts, and some of these properties could even be obscured by language. 
If that is the case, then, even though Gödel did ascribe some important role to 
language in acquiring the knowledge of concepts, he might also think that this 
knowledge should be supplemented by the knowledge we should try to gain 
using some non-linguistic methods. However, by dismissing linguistic analysis 
as inadequate for some kind of deeper understanding of concepts, Gödel would 
deprive himself from the accuracy and exactness, which linguistic analysis makes 
possible. As a consequence, his search for the deeper understanding of concepts 
could leave us with no clear expectations about the success or the importance of 
that undertaking.

5. Conclusion

This paper has tried to show that Hao Wang’s interpretation, according to 
which Gödel thought language is just a sensory tool which helps humans to get 
in touch with the world of abstract entities, is wrong. On the contrary, it seems 
likely that Gödel would take language to have a substantial role in acquiring 
mathematical knowledge, owing to its intensional meaning, which consists in 
objectively existing concepts. The reason is that the understanding of precisely 
these concepts is what Gödel considered mathematical knowledge to consist in. 
However, concepts are, in Gödel’s view, independent of the language in which 
they are expressed. Perhaps for that reason Gödel tried to warn us against the 
overestimation of language. This can also be the reason why Gödel might think 
that there are some other, non-linguistic methods by which the properties of 
the conceptual world could also be discovered. However, abandoning linguistic 
analysis in search for the deeper understanding of concepts could have some 
negative consequences. The fact is that we can form some intuition about what 
concepts might be, as long as we treat them as something which is expressed 
by language, or which directs somehow our use of linguistic symbols. On 
the other hand, if we try to consider them independently of language, we 
lose any intuition about them. So it is not clear anymore what some deeper 
understanding of so conceived concepts would consist in and what we can 
hope to gain from it. This is why we should probably stick to intensional 
considerations of language if we are going to explore Gödel’s ideas about the 
theory of concepts.
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