REFF - Faculty of Philosophy Repository
University of Belgrade - Faculty of Philosophy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   REFF
  • Psihologija / Psychology
  • Radovi istraživača / Researcher's publications - Institut za psihologiju
  • View Item
  •   REFF
  • Psihologija / Psychology
  • Radovi istraživača / Researcher's publications - Institut za psihologiju
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

O odnosu aristotelove silogistike i savremene logike

Aristotle's syllogistic and modern logic

No Thumbnail
Authors
Anđelković, Darinka
Article (Published version)
Metadata
Show full item record
Abstract
U ovom članku su prikazana različita shvatanja Aristotelove silogistike kao logičke teorije. Lajbnic je pružio matematičku interpretaciju silogistike. Bul je pomoću algebarskih formula izrazio sve logičke relacije iz teorije silogistike. Lukašijevič je izgradio sistem silogistike kao logičku teoriju posebnu i različitu od računa predikata. Upoređivanjem silogistike sa drugim formalnim sistemima, dokazana je njena definicijalna ekvivalentnost sa Bulovom algebrom. Izgrađeni su mnogi sistemi silogistike čije su razlike u vezi sa prepoznavanjem nosioca egzistencijalnog smisla kategoričkih sudova. Pokazalo se da se ovi sistemi silogistike mogu utopiti u račun predikata, što je značilo da silogistika nije posebna i različita teorija od računa predikata.
Different understandings of Aristotle's syllogistic as a logical theory are reviewed. Leibniz offered a mathematical interpretation of syllogistic. Boole expressed all syllogistic relations by means of algebraic formulas. Lukasiewicz built a system of syllogistic as a logical theory separate and different from the predicate calculus Comparing syllogistic with other formal systems, its definitional equivalence with Boolean algebra is proven. Many systems of syllogistic are built, and their differences are due to recognizing the bearer of existential sense of categorical propositions. It is shown that these systems can be embedded in the predicate calculus, which means that syllogistic is not a separate and different theory from the predicate calculus.
Keywords:
utapanje / račun predikata / prevod / formalni sistem / egzistencijalni smisao / Bulova algebra / Aristotelova silogistika / translation / predicate calculus / formal system / existential sense / embedding / Boolean algebra / Aristotle's syllogistic
Source:
Theoria, 2005, 48, 3-4, 155-166
Publisher:
  • Srpsko filozofsko društvo, Beograd

ISSN: 0351-2274

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_reff_495
URI
http://reff.f.bg.ac.rs/handle/123456789/495
Collections
  • Radovi istraživača / Researcher's publications - Institut za psihologiju
Institution/Community
Psihologija / Psychology
TY  - JOUR
AU  - Anđelković, Darinka
PY  - 2005
UR  - http://reff.f.bg.ac.rs/handle/123456789/495
AB  - U ovom članku su prikazana različita shvatanja Aristotelove silogistike kao logičke teorije. Lajbnic je pružio matematičku interpretaciju silogistike. Bul je pomoću algebarskih formula izrazio sve logičke relacije iz teorije silogistike. Lukašijevič je izgradio sistem silogistike kao logičku teoriju posebnu i različitu od računa predikata. Upoređivanjem silogistike sa drugim formalnim sistemima, dokazana je njena definicijalna ekvivalentnost sa Bulovom algebrom. Izgrađeni su mnogi sistemi silogistike čije su razlike u vezi sa prepoznavanjem nosioca egzistencijalnog smisla kategoričkih sudova. Pokazalo se da se ovi sistemi silogistike mogu utopiti u račun predikata, što je značilo da silogistika nije posebna i različita teorija od računa predikata.
AB  - Different understandings of Aristotle's syllogistic as a logical theory are reviewed. Leibniz offered a mathematical interpretation of syllogistic. Boole expressed all syllogistic relations by means of algebraic formulas. Lukasiewicz built a system of syllogistic as a logical theory separate and different from the predicate calculus Comparing syllogistic with other formal systems, its definitional equivalence with Boolean algebra is proven. Many systems of syllogistic are built, and their differences are due to recognizing the bearer of existential sense of categorical propositions. It is shown that these systems can be embedded in the predicate calculus, which means that syllogistic is not a separate and different theory from the predicate calculus.
PB  - Srpsko filozofsko društvo, Beograd
T2  - Theoria
T1  - O odnosu aristotelove silogistike i savremene logike
T1  - Aristotle's syllogistic and modern logic
EP  - 166
IS  - 3-4
SP  - 155
VL  - 48
UR  - https://hdl.handle.net/21.15107/rcub_reff_495
ER  - 
@article{
author = "Anđelković, Darinka",
year = "2005",
abstract = "U ovom članku su prikazana različita shvatanja Aristotelove silogistike kao logičke teorije. Lajbnic je pružio matematičku interpretaciju silogistike. Bul je pomoću algebarskih formula izrazio sve logičke relacije iz teorije silogistike. Lukašijevič je izgradio sistem silogistike kao logičku teoriju posebnu i različitu od računa predikata. Upoređivanjem silogistike sa drugim formalnim sistemima, dokazana je njena definicijalna ekvivalentnost sa Bulovom algebrom. Izgrađeni su mnogi sistemi silogistike čije su razlike u vezi sa prepoznavanjem nosioca egzistencijalnog smisla kategoričkih sudova. Pokazalo se da se ovi sistemi silogistike mogu utopiti u račun predikata, što je značilo da silogistika nije posebna i različita teorija od računa predikata., Different understandings of Aristotle's syllogistic as a logical theory are reviewed. Leibniz offered a mathematical interpretation of syllogistic. Boole expressed all syllogistic relations by means of algebraic formulas. Lukasiewicz built a system of syllogistic as a logical theory separate and different from the predicate calculus Comparing syllogistic with other formal systems, its definitional equivalence with Boolean algebra is proven. Many systems of syllogistic are built, and their differences are due to recognizing the bearer of existential sense of categorical propositions. It is shown that these systems can be embedded in the predicate calculus, which means that syllogistic is not a separate and different theory from the predicate calculus.",
publisher = "Srpsko filozofsko društvo, Beograd",
journal = "Theoria",
title = "O odnosu aristotelove silogistike i savremene logike, Aristotle's syllogistic and modern logic",
pages = "166-155",
number = "3-4",
volume = "48",
url = "https://hdl.handle.net/21.15107/rcub_reff_495"
}
Anđelković, D.. (2005). O odnosu aristotelove silogistike i savremene logike. in Theoria
Srpsko filozofsko društvo, Beograd., 48(3-4), 155-166.
https://hdl.handle.net/21.15107/rcub_reff_495
Anđelković D. O odnosu aristotelove silogistike i savremene logike. in Theoria. 2005;48(3-4):155-166.
https://hdl.handle.net/21.15107/rcub_reff_495 .
Anđelković, Darinka, "O odnosu aristotelove silogistike i savremene logike" in Theoria, 48, no. 3-4 (2005):155-166,
https://hdl.handle.net/21.15107/rcub_reff_495 .

DSpace software copyright © 2002-2015  DuraSpace
About REFF | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About REFF | Send Feedback

OpenAIRERCUB